KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 50
If $A$ = $\left[ \begin{matrix}
0 & \phantom{-}6 & \phantom{-}7 \\
-6 & \phantom{-}0 & \phantom{-}8 \\
7 & \phantom{-}-8 & \phantom{-}0 \\
\end{matrix} \right]$,
$B$ = $\left[ \begin{matrix}
0 & \phantom{-}1 & \phantom{-}1 \\
1 & \phantom{-}0 & \phantom{-}2 \\
1 & \phantom{-}2 & \phantom{-}0 \\
\end{matrix} \right]$ and
$C$ = $\left[ \begin{matrix}
2 \\
-2 \\
3 \\
\end{matrix} \right]$, calculate $AB$, $AC$ and $A(B+C)$. Verify that $(A+B)C$ = $AC$+$BC$
Solution
$A+B$ = $\left[ \begin{matrix}
0 & \phantom{-}6 & \phantom{-}7 \\
-6 & \phantom{-}0 & \phantom{-}8 \\
7 & \phantom{-}-8 & \phantom{-}0 \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
0 & \phantom{-}1 & \phantom{-}1 \\
1 & \phantom{-}0 & \phantom{-}2 \\
1 & \phantom{-}2 & \phantom{-}0 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
0 & \phantom{-}7 & \phantom{-}8 \\
-5 & \phantom{-}0 & \phantom{-}10 \\
8 & \phantom{-}-6 & \phantom{-}0 \\
\end{matrix} \right]$
$(A+B)C$ = $\left[ \begin{matrix}
0 & \phantom{-}7 & \phantom{-}8 \\
-5 & \phantom{-}0 & \phantom{-}10 \\
8 & \phantom{-}-6 & \phantom{-}0 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
2 \\
-2 \\
3 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
-14+24 \\
-10+30 \\
16+12 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
10 \\
20 \\
28 \\
\end{matrix} \right]$ ---- LHS
$AC$ = $\left[ \begin{matrix}
0 & \phantom{-}6 & \phantom{-}7 \\
-6 & \phantom{-}0 & \phantom{-}8 \\
7 & \phantom{-}-8 & \phantom{-}0 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
2 \\
-2 \\
3 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
-12+21 \\
-12+24 \\
14+16 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
9 \\
12 \\
30 \\
\end{matrix} \right]$
$BC$ = $\left[ \begin{matrix}
0 & \phantom{-}1 & \phantom{-}1 \\
1 & \phantom{-}0 & \phantom{-}2 \\
1 & \phantom{-}2 & \phantom{-}0 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
2 \\
-2 \\
3 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
-2+3 \\
2+6 \\
2-4 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
1 \\
8 \\
-2 \\
\end{matrix} \right]$
$AC+BC$ = $\left[ \begin{matrix}
9 \\
12 \\
30 \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
1 \\
8 \\
-2 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
10 \\
20 \\
28 \\
\end{matrix} \right]$ ---- RHS
Thus LHS = RHS. Hence $(A+B)C$ = $AC$+$BC$
6b665518-90df-11ed-be7f-5405dbb1cb03